Naturally graded quasi-filiform Leibniz algebras

نویسندگان

  • L. M. Camacho
  • J. R. Gómez
  • A. J. González
  • B. A. Omirov
چکیده

The classification of naturally graded quasi-filiform Lie algebras is known; they have the characteristic sequence (n − 2, 1, 1) where n is the dimension of the algebra. In the present paper we deal with naturally graded quasi-filiform non-Lie–Leibniz algebras which are described by the characteristic sequence C(L) = (n − 2, 1, 1) or C(L) = (n − 2, 2). The first case has been studied in [Camacho, L.M., Gómez, J.R., González, A.J., Omirov, B.A., 2006. Naturally graded 2-filiform Leibniz Algebra and its applications, preprint, MA1-04-XI06] and now, we complete the classification of naturally graded quasi-filiform Leibniz algebras. For this purpose we use the software Mathematica (the program used is explained in the last section). © 2008 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 11 64 6 v 1 [ m at h . R A ] 2 1 N ov 2 00 6 NATURALLY GRADED 2 - FILIFORM LEIBNIZ ALGEBRAS

The Leibniz algebras appear as a generalization of the Lie algebras [8]. The classification of naturally graded p-filiform Lie algebras is known [3], [4], [5], [9]. In this work we deal with the classification of 2-filiform Leibniz algebras. The study of p-filiform Leibniz non Lie algebras is solved for p = 0 (trivial) and p = 1 [1]. In this work we get the classification of naturally graded no...

متن کامل

On Derivations of Some Classes of Leibniz Algebras

In this paper, we describe the derivations of complex n-dimensional naturally graded filiform Leibniz algebras NGF1, NGF2, and NGF3. We show that the dimension of the derivation algebras of NGF1 and NGF2 equals n+1 and n+2, respectively, while the dimension of the derivation algebra of NGF3 is equal to 2n−1. The second part of the paper deals with the description of the derivations of complex n...

متن کامل

On Classification of Complex Filiform Leibniz

Abstract. This work deal with Leibniz algebras. It is shown that in classifying of filiform non-Lie Leibniz algebras over the field of complex numbers which are obtained from the naturally graded non-Lie Leibniz algebras it suffices to consider some special basis transformations. Using this result, we derive a criterion that ascertains whether given two such filiform non-Lie Leibniz algebras ar...

متن کامل

On Low-Dimensional Filiform Leibniz Algebras and Their Invariants

The paper deals with the complete classification of a subclass of complex filiform Leibniz algebras in dimensions 5 and 6. This subclass arises from the naturally graded filiform Lie algebras. We give a complete list of algebras. In parametric families cases, the corresponding orbit functions (invariants) are given. In discrete orbits case, we show a representative of the orbits. 2010 Mathemati...

متن کامل

Naturally graded p-filiform Lie algebras in arbitrary finite dimension

The present paper offers the classification of naturally graded p filiform Lie algebras in arbitrary finite dimension n . For sufficiently high n , (n ≥ max{3p − 1, p + 8}), and for all admissible value of p the results are a generalization of Vergne’s in case of filiform Lie algebras [11]. Mathematics subject classification 2000: 22E60, 17B30, 17B70

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2009